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Abstract—The current trend in commercial processors of 
moving to many cores (30 to100 and beyond) on a single 
die poses both an opportunity and a challenge for space 
based processing. 1 2 The opportunity is to leverage this 
trend for space application and thus provide an order of 
magnitude increase in onboard processing capability. The 
challenge is to provide the requisite reliability in an 
extremely challenging environment. In this paper, we will 
discuss the requirements for reliable space based multicore 
computing and approaches being explored to deliver this 
capability within NASA's extremely tight power, mass, and 
cost constraints.  

Topics include:  i) discussing the salient issues in achieving 
fault tolerance in a many-core chip, ii) describing the 
architecture of an existing commercial many-core processor 
(Tilera Tile64), iii) using it for an examination of the design 
issues needed for increasing levels of reliability, and iv) a 
discussion of how the Tile64 is being adapted for space as 
the Maestro processor and of the tradeoffs involved in 
making it a practical space design.  

The OPERA Maestro processor based on the Tilera TILE64 
architecture shows potential to give high processing 
performance at an error rate equivalent to current space 
deployed uniprocessor systems.  We will discuss potential 
enhancements to the Maestro processor to address NASA 
specific performance and reliability requirements. 
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1. INTRODUCTION 

Although current multicore processors with two to four 
cores have become widespread, it is becoming clear that the 
next generation of this technology will replicate a much 
large number of smaller, more basic processors, creating 
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what is termed many-core” processors.  Examples of 
multicore machines include the HyperX from Coherent 
Logix, the 64-core TILE64 from Tilera [1] and a new 
experimental 80 core processor from Intel [2]. These 
processors consist of tens to low hundreds of homogenous 
processing elements, connected by a high speed mesh or 
crossbar grid network.  The parallelism that exists on these 
processors can improve not only system level performance, 
but the granularity available from a large number of tightly 
integrated cores can speed up individual tasks or 
applications as well. Various NASA programs and missions 
are in need of reliable and flight qualifiable high 
performance processing for both critical applications and 
on-board science processing.   

By using many-core processors, high performance can be 
obtained at drastically reduced mass and volume, and 
compared to an equivalent multicomputer with computers 
on separate chips and boards.  This paper focuses on two 
salient design issues critical to achieving a high degree of 
dependability in these systems: (1) Redundancy for 
Permanent Fault Recovery and (2) Mechanisms for 
Detecting and Recovering from Transient Errors.  We start 
with a brief discussion of the issues involved then describe 
the functionality of a real multicore space computer and 
discuss how these issues might be dealt with in that context. 

Our discussion is anchored on one such manycore system 
that is under consideration. The Maestro processor 
developed by the OPERA program is a radiation hardened 
by design processor based on the TILE64 processor by 
Tilera, We will discuss the TILE64 and the changes made 
by OPERA and how it addresses fault tolerance 
requirements.   

Redundancy for Permanent Fault Recovery  

There is a great deal of inherent redundancy in large 
multicore chips (typically with dozens of processor cores, 
redundant I/O and memory ports, power supply pins, etc) to 
allow degraded recovery from a wide range of permanent 
faults. Thus upon failure of a processor core, 
interconnection switch, I/O or memory port, the computing 
load can be shifted to other resources on the chip. This 
approach is imperfect since there are some faults that can 
disable the whole chip, but it can lead to considerably 
improved overall reliability, i.e., the length of time that the 
computer can be expected to provide required performance 
in space.  However, the effectiveness of this approach 
depends upon a multicore chip design that is optimized to 
minimize the probability of single failures that disable the 
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whole chip, and an architecture that can efficiently work 
around failed cores, memory and I/O elements. Redundancy 
can be implemented as fine grained structures such as 
triplicated modules, robust latches, and structured code, or it 
can be implemented as gross methods such as duplicating 
effort across multiple processing elements managed by 
software checking 

Detection and Recovery from Faults and Errors 

In order to recover from a permanent fault or transient error, 
it is necessary to detect that an error has occurred and to 
provide an automated recovery action to restore 
computations.  Key issues here are: i) how effective is the 
error detection provided? ii) to what degree can 
computations be correctly restored after the error has been 
detected? and iii) how is the recovery mechanism itself 
protected?  Since the processors on many-core chips are 
unlikely to have comprehensive fault tolerance at the 
hardware level, this must necessarily depend upon software-
implemented fault tolerance. Software implemented fault 
tolerance (SIFT) depends upon a reliable messaging system 
and isolation of faults to individual processors so that 
protective redundancy can be effectively employed – 
especially in preventing errors from causing data damage 
that escapes virtual memory protection boundaries.  These 
present real challenges for multicore chip designs.  Before 
exploring these issues it is useful to explore alternatives. 

Gross Detection and Recovery Mechanisms— If very gross 
detection mechanisms are employed (such as looking for a 
heartbeat or crash from a machine and activating a spare), 
recovery consists of trying a rollback recovery and if it is 
not successful, throwing out existing computations followed 
by reloading and rebooting the machine.  In this case, errors 
are likely to have propagated before detection and may have 
produced incorrect outputs or damaged system state – 
making recovery of computations problematic.  This 
approach is typical of many existing spacecraft where few 
errors are expected during a space mission due to radiation 
hardening of hardware parts. In this case, another spacecraft 
computer (often a smaller, extremely radiation hardened 
processor) can intervene, or specially designed logic circuits 
can be used to provide “safe hold modes”. These 
architectures provide a hierarchical level of protection above 
that of the standard operational spacecraft avionics.  The 
applicability of these gross techniques may be adequate for 
non-critical applications depending on the effectiveness of 
radiation hardening techniques and the mission 
requirements, e.g., if a mission only expects a handful of 
SEUs during a mission and the probability of correct 
recovery using these techniques is around 99%. Validating 
the adequacy of this approach depends, in turn, upon having 
thorough radiation testing for the parts.  

Comprehensive Detection and Recovery Mechanisms—
These are designed to detect errors before an incorrect 
output is generated and before error propagation reduces the 
chance for recovering correct computations.  When an error 

is detected, recovery is implemented using well-known 
checkpointing and rollback techniques.  Here computations 
are checked at specified test points before outputs are 
generated, and state is updated using redundancy built into 
the computations.  Highly structured computations can use 
software methods such Algorithm Based Fault Tolerance 
(ABFT) quite efficiently (these are really algorithm based 
error checking techniques), but unstructured computations 
must use replicated computations with comparisons.  The 
software that implements the detection and recovery 
functions is preferably triplicated and voted so that it cannot 
be disrupted by a single fault.   

This approach has been demonstrated in current 
multicomputer cluster based systems that depend upon 
independence of faults in different circuit processors. But to 
use this for a many-core architecture i) the probability of 
faults in common circuits such as the clock and overall 
control must be greatly minimized, ii) a dependable 
communication mechanism must allow a processor tile to 
know the source of a message and that received messages 
are correct, and iii) strong virtual memory protections must 
be provided to prevent errors in one processor core, 
communications link, or peripheral device from affecting 
other cores. 

2. THE TILE64 ARCHITECTURE 

Overview[1] 

The Tile64 system is a multi-core processor system on a 
chip containing an array of processing elements and data 
routers, called switch engines, connected in a Manhattan 
style grid as illustrated in Figure 1.  Each tile in the array 
contains a 32 bit 3-way VLIW general purpose Processing 
Element (PE) and a data router with five data channels.  
Tilera has released updated versions of this architecture in 
the TilePro and TileGX series.  This paper is limited to the 
architecture as it exists in the Tile64 series only. There are 
enhancements that are designed into the the TilePro and 
TileGX series that increase fault tolerance performance 
above that of the TILE64, but are outside of the scope of 
this document. 

The PEs are designed to operate independently, and each 
contains its own Level 1 and Level 2 caches, with a TLB 
and DMA engine. Each PE is capable of running a full 
featured operating system such as Linux or VxWorks, or 
running bare applications. The L1 and L2 caches are 
designed so that shared memory programming is fully 
supported, with either hardware supported or user managed 
cache coherency. 

At the core of the Tilera architecture is a mesh network that 
interconnects the Tilera tiles, and I/O subsystems.  There are 
five parallel networks in the mesh.  For each, the path 
between modules is 32-bits wide, the same as words and 
addresses in the tiles.  Of the five networks, four are 
designated dynamic networks.  They are packet switched, 
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and wormhole routed, and each is dedicated to a particular 
function, i.e.,. memory access requests and memory data 
transfer, messaging between applications programs, and OS 
messages.  The fifth is called the static network. It does not 
provide packet address decode and routing, but instead 
provides fixed, pre-programmed routing. It can be 
programmed as part of a parallel application to move data in 
user-specified static patterns.  

 

Figure 1: General architecture

 
Figure 2: Single Tile Overview 

The five networks are a Static Tile Network (STN), a User 
Dynamic Network, (UDN), a Memory Dynamic Network 
(MDN), a I/O Dynamic Network (IDN), and a Tile Dynamic 
Network (TDN). A simplified block diagram of an 
individual tile is shown in Figure 2 and a summary of its 
functionality is listed in Table 1.    

The Dynamic networks are packet based, are “fire and 
forget” and use “wormhole routing.” Their routes do not 
need to be set up ahead of time.  Each tile Switch Engine 

can route multiple packets per network at the same time. 
Upon receipt of a packet header, the Switch Engine 
examines the header to determine which direction to route 
the packet.  The packet is routed using a dimension ordered 
routing policy.  The packet is first routed along the X 
dimension until the destination column is reached, and then 
it is routed along the Y dimension until the destination tile is 
reached. 

A simplified diagram of the Switch Engine is shown in 
Figure 3. 

Dynamic Networks:   

UDN (User Dynamic Network) —The UDN is a user 
accessible routing network. It is directly accessed by the 
processor via direct reads and writes to special purpose 
registers.  Because it is tightly integrated with the ALU, low 
latency blocking sends and receives are available.  In this 
mode, if the network is unable to accept an outgoing packet, 
or an incoming packet is not yet available, the processor will 
sleep until the network is ready.  

 

Figure 3: Switch Engine unit, each incoming direction 
has a multiple word queue for flow control. Each tile 
contains one switch unit per network. 

 

A field in the dynamic header tag word specifies a demux or 
mailbox queue. Each processor can send to or receive from 
4 queues on each tile. An incoming packet that is meant for 
the receiving tile examines the tag and places the packet in 
the appropriate queue. These queues are accessible by the 
user through special purpose registers on each PE that are 
allocated for each queue.  This allows differently tagged 
messages to be serviced out of order. Non tagged messages 
are placed in a “catch-all” queue, and are serviced in the 
order they are received. Each queue is a part of a larger 
packet memory that is shared with the IDN. Partitioning of 
the shared packet memory is performed by system level 
software and is not modifiable by the user.  When a packet 
arrives at a destination, an interrupt is triggered at the 
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destination processor and a flag is set to indicate which 
queue has data available.  The presence of a queue buffer 
allows multiple incoming packets to be stored in the switch 
engine and allows the PE to process the incoming packets at 
its own pace, and allows the network to be freed up for 
routing other packets.   

There is no data protection mechanism described for the 
packet queue memories or the queue management.  There is 
program access protection for each network at each PE.  
Access to the networks can be limited to privileged 
instruction levels. 

To prevent sending messages across a user defined 
boundary, the Tile64 utilizes “hardwall” protection scheme.  
The hypervisor running on the local PE specifies, for each 
output port, if message traffic is allowed to leave that port. 
This hardwall is implemented at each tile such that if a 
message is to be routed to a protected port, the message is 
not sent through that port, and instead an interrupt will be 
triggered on the tile’s local PE.  A similar hardwall 
mechanism exists for the Static Data Network. 

MDN (Memory Dynamic Network)—The MDN is used to 
transfer data between external memory and the processor 
caches and for responding to requests on the TDN. It 
operates as a dynamic network, but does not have the 
hardwall mechanism of the UDN and STN networks.  It is 
not user accessible and is accessed only by the L2 cache 
engine.  

TDN (Tile Dynamic Network)—The TDN is used to initiate 
tile-to-tile memory requests, i.e., to move data between tile 
caches.  The responses for requests on the TDN are 
delivered on the MDN.  The TDN is only accessible by the 
L2 cache engine. 

IDN (I/O Dynamic Network)—The IDN is the primary 
network for system level software such as a hypervisor or 
guest operating system to control and coordinate messages 
and system level operations such as task spawning, 
processor allocation, and device management. It also is the 
primary method of communicating with the various I/O 
devices on the chip.  It operates as a dynamic network with 
two multiplexed channels per processor similar to the four 
queues of the UDN.  The queues are part of a larger packet 
memory shared with the UDN and operate identically to the 
UDN with the exemption of only having 2 queues instead of 
4.  The IDN is a privileged network and is not accessible to 
user level code.   The IDN, along with the STN, is also used 
by boot level code to distribute PE configuration and initial 
boot code to each processing element. The hardwall 
protection mechanism is also implemented for the IDN and 
operates identically to the UDN’s hardwall protection.  

The Static Network: 

STN (Static Network)—The STN provides low overhead, 
low latency tile to tile communication to transfer operands 

and is meant for repetitive and well known communication. 
Data flows through the network a word at a time with no 
concept of discrete packets or any higher level of 
abstraction.  Low overhead is attained by programming a 
routing processor in each tile ahead of time with a fixed 
route map.  The switch engine in each processor is 
programmed with a destination direction for each source 
direction.   The network remains configured for that pattern 
until the switches are changed to another routing 
configuration.  A message can be routed to one or more 
output ports. A message can be transferred from tile to tile 
as fast as 1 clock per word per node traversed.  There is also 
flow control on a per tile hop basis.   

Each link buffers three words of storage, and the sender 
therefore begins with three credits. A sender decrements its 
credit count when it sends a word, and increments the credit 
count when it receives acknowledgement from the receiver. 
The send/receive flow control handshaking is handled 
entirely in hardware by the switch engine.  A sender can 
only send when its count is non-zero.   

The STN incorporates hardwall protection.  There is no 
deadlock prevention for this network as it is not needed 
since routing is determined by software.  If a failure of a 
routing processor is detected, it is possible to re-program the 
routing of the static network to avoid using the failed 
routing processor. 

Table 1 summarizes the data networks. 

Table 1. Network types and function 

Network Access 
type 

Routing 
type 

Hardwall Used for 

STN User Static YES User 
messaging 

UDN User Dynamic YES User 
messaging 

MDN System Dynamic NO Memory 
access 

TDN System Dynamic NO Memory 
Access 

IDN System  
(USER if 
not 
running 
an O/S) 

Dynamic YES I/O and 
System 
Messaging 

 

Network Fault Tolerance Issues: 

None of the Switch Engines employ internal redundancy 
(e.g. parity) in hardware for error detection.  This is a 
potential reliability problem in a space environment as will 
be discussed later. 

The Memory System 

Main Memory—The memory system allows four channels 
of RAM each connected to the switch network by a DDR2 
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controller. The DDR2 controllers run at 400MHz and are 64 
bits wide, with an optional 8 bit ECC with single bit error 
correction, double bit error detection, (SEC/DED) 
protection. Each memory controller is connected to the 
internal data network by three MDN ports, and one IDN 
port. 
 
The DDR2 controllers accept read and write memory 
packets from the tiles’ cache controllers or from the DMA 
engines in the I/O interfaces via the MDN -- returning data 
packets upon receiving reads and returning an 
acknowledgement packet for writes. A complex queue 
controller can reorder requests for increased performance. 
Control packets are also communicated via the IDN. 
 
Caches and Virtual Memory—Each PE contains two caches; 
a split L1 cache and a combined L2 cache. The L1 cache 
contains an 8KB write-through data cache, and an 8KB 
instruction cache. The L2 cache is a 64KB combined 
instruction and data write-back cache, and includes a DMA 
engine to handle cache misses and write backs.  The cache 
and TLB properties are shown in Table 2 – along with a 
summary of their error protection. 
 

Table 2:  Data on Cache and TLB 
 Size Type Line 

Size 
Write 
Policy 

Protection 

L1 
Instruction 

8KB Direct 64B NA 64-bit parity 

L1 Data 8KB 2-way 
associative 

16B Write 
through 

8 bit parity 

L2 64KB 2 way 
associative 

64KB Write 
back 

8 bit parity 

Instruction 
TLB 

8 
entries 

Fully 
associative 

   

Data TLB 16 
entries 

Fully 
Associative 

   

 
Memory-Cache Fault Tolerance Issues 
 
Although the caches are protected using an error detecting 
code, the tags and the TLBs are not. The TLBs on the 
TILE64 consist of processor flops and logic cells, so from 
an error rate point of view, errors in the TLB would be 
lumped in the same category as processor errors. 
Furthermore, although the L2 cache is write-back, there is 
no single bit error correction, so error recovery will be 
complicated and time consuming. Hardware-based error 
detection is not provided for the TLB, cache control 
sequencers and the DMA controllers, so errors may violate 
virtual memory protection boundaries 
 
Input/Output—There are several I/O options available on 
the Tile64.  As well as the 4 DDR2 controllers, there are 2 
10Gb/s XAUI ports, two 10/100/1000 Mbit Ethernet MACs, 
an HPI interface, 4 banks of 16 bit General Purpose I/O, a 2 
wire UART, an I2C port, a Serial ROM port, and 2 4-lane 
PCIe ports.  Each of these I/O options are connected to the 
internal PE mesh by I/O “shims.”  The shims provide a 
protocol translation between the I/O device and the internal 
data networks.  The shims can perform DMA to and from 
on chip caches and external memory.   

 
I/O Fault Tolerance Issues: 
 
Since none of the intercommunications networks use 
hardware based error detection, end-to-end protection of 
data presents a reliability problem as does protection of 
local hardware controllers (e.g. state machines) and DMA 
controllers in the and DDR2 interfaces, cache’s cores, and 
I/O devices. 
 
Processing Elements 

All the processing elements on the chip are identical.  They 
are a 64-bit, VLIW processor.  Each 64 bit instruction word 
is called an instruction bundle and can encode two or three 
instructions.  Each bundle can handle two ALU and one 
Load/Store instruction. 

Processing Element Fault Tolerance Issues 

In order to achieve low power and high performance in the 
commercial marketplace, it was not to be expected that the 
PEs implement concurrent error detection.  Software-Based 
Fault-tolerance can be expected to address this problem.  
However, it must be noted that when a tile runs the 
hypervisor or an underlying OS computing errors can 
violate virtual memory boundaries or corrupt system state 
tables.  This provides a challenge in implementing fault 
tolerance.  

3 TILERA FAULT-TOLERANCE CHALLENGES 

The TILE64 has used the standard low cost redundancy 
techniques common for commercial parts to improve its 
reliability by adding error detection codes to caches and 
main memory.  Since the majority of the active area on the 
chip lies in these areas, most errors are covered, and the 
undetected error rate should be greatly reduced.  In addition 
a hardwall protection scheme for the switch network and 
virtual memory protection is provided to limit error 
propagation.  There is a great deal of redundancy on the 
chip with a rudimentary way to work around tile faults. 
Although its design point is well chosen for the terrestrial 
market (its intended application), where if a processor fails 
one simply replaces a board, considerably more must be 
done to achieve adequate dependability in space.  In space 
the transient error rate is likely to be three to four orders of 
magnitude higher than on Earth due to ionizing radiation, 
and many missions require long unmaintained life. 

Returning to Section 1 above we examine potential 
deficiencies of the Tile64 for space use and in the following 
Section 4 we will examine what has been done to address 
some of these problems in the new radiation hardened 
Maestro Chip.  This is not a fault of the TILE64, as with 
typical commercial parts, fault tolerance for space 
applications is not a priority or design requirement.  The 
OPERA program was tasked to build on the TILE64 
architecture to add fault tolerance. 



 

 6

Redundancy for Permanent Fault Recovery Revisited 

Due to the dimension ordered routing scheme of the Tile64, 
when a tile router fails the other tiles in the row and column 
in which the failure occurred are blocked in some of their 
communications.  This can be worked around by a 
rearrangement of the programs in all of the various tiles 
(possibly with software relaying at a significant 
performance cost), but it requires shutting the system down 
and restarting after redesigning the communications 
patterns.  An increase in flexibility of the routing algorithm 
could make this recovery easier and more efficient.  By 
providing a capability to automatically route around a failed 
tile, a spare tile anywhere could be used to replace it.  
Furthermore, when implementing software-based fault 
tolerance, it is useful for a tile to be able to send a message 
over two disjoint paths to gain a high degree of assurance 
that it has been delivered – even in the face of a new 
permanent fault.  It appears that this could be done without 
overly complicating the Tile64 routing design possibly with 
an “avoid row/column” feature addition to the current 
dimension ordered routing policy. If only the processing 
element of the tile fails, the router is still functional, capable 
of routing packets, however functionality may be slightly 
degraded.  Answering hardwall interrupts on that tile and/or 
managing static network routes on that tile may be difficult 
depending on the failure mode of the processing element. 

A more vexing problem is that of single faults or failures in 
critical shared logic that can disable the whole chip or cause 
errors in multiple tiles that can only be recovered by a 
system restart. 

Detection and Recovery from Faults and Errors Revisited 

The Tile64 chip has caches that use hardware based error 
detection, but much of the rest of the chip has little or no 
hardware support for error detection.  It is possible to 
partially compensate for this by using software-based fault 
tolerance techniques, but some errors will go undetected 
damage system state and require a reboot/restart to restore 
functionality.  For example, it is possible to add redundancy 
to some packets using software to allow concurrent error 
detection in some of the dynamic networks and the static 
network (IDN, STN, and UDN). This cannot be done for the 
Memory Dynamic Network (MDN) and the Tile Dynamic 
Network (TDN) because they are totally hardware 
controlled. Since they do not provide hardware checking, 
they remain a serious problem.  A single bit error in these 
networks can i) go undetected, ii) and damage a virtual 
memory space that is different than that of the currently 
executing process.  Similarly the various DMA controllers 
in the caches, processors or I/O devices may have 
undetected errors that can create similar damage.  This 
makes Comprehensive Detection and Recovery Mechanisms 
impossible - resulting in incorrect outputs or the inability for 
a successful rollback recovery. 

Furthermore, since individual computations are being 
carried out in largely unprotected processors, these 

processors may have undetected errors while running the 
Hypervisor. These errors may, in turn, create errors in the 
DMA controller settings or in shared tables for the 
hypervisors. This can make error recovery impossible, - 
corrupting critical state and requiring a reboot/restart to re-
establish computing. 

Reducing the Effective Error Rate by Radiation Hardening 

If the error rate in space can be dramatically reduced then 
Gross Detection and Recovery Mechanisms (see Section 1) 
may be adequate to meet the needs for some spacecraft 
applications.  The commonly used technique for doing this 
is to redesign chips to be more resilient using Radiation 
Hardening by Design.  If transient errors can be reduced to a 
very small number during the life of a mission, then most 
(perhaps 90%) of them will be automatically recovered, and 
a very rare reboot/restart may be an acceptable price for the 
orders of magnitude increase in power-performance 
provided by these processors.  This is the approach taken by 
the OPERA Program described in section 4. 

4. MAESTRO 

Under the OPERA program, Boeing has developed the 
Maestro processor, a 49 core version of the Tile64 for space 
applications.[3] The main approach Boeing used when 
designing the Maestro processor was to make the new 
design as functionally equivalent as possible to the original 
Tile64 design, with the addition of a floating point unit on 
each PE, and I/O options customized for the Maestro 
application.  To that end, they received a full RTL 
description of the Tile64 from the Tilera Corporation and 
worked from that dataset.  Boeing used their 90nm bulk 
CMOS RHBD libraries to increase the radiation tolerance of 
the processor.  

In addition to using their RHBD libraries, Boeing has 
modified the various I/O devices on the Maestro to meet 
radiation tolerance requirements, and to tailor I/O options to 
OPERA program requirements.  PCIe was removed for 
additional XAUI ports, and additional JTAG features were 
added. 

Floating Point Unit 

Boeing added the Aurora FPU used in Sun Microsystems 
Sparc chips for the FPU.  It is an IEEE-754 single/double 
precision FPU with multiply-accumulate capability.  It is 
interfaced to the PE via special purpose registers in the PE 
and custom interrupts for control, data transfer, and 
synchronization.  Interface to the FPU via special purpose 
registers was chosen in order to avoid having to modify the 
processor to add extra instructions and exemptions.  The 
FPU instead operates as a “coprocessor” instead of an 
integrated submodule of the main processor. 
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Memories  

The on chip memories such as caches and I/O buffers were 
modified for additional fault tolerance capability. 
Artisan/ARM SRAM cells were used and each memory 
bank was rearranged in order to interleave bits.  Bit 
interleaving physically spreads out logically adjacent bits in 
order to reduce the probability of multi-bit errors in a single 
word.   

There are three types of SRAM banks on the Maestro:  
L1/L2 cache memory, DDR memory shim memory, and 
Ethernet shim memory.   Error Detection and Correction 
(EDAC) was added to all three types of memory.  Single-bit 
Error Correction/Double-bit Error Detection (SEC/DED) is 
the primary method of protection for those memories, with 
some exemptions.   

Also included in the Maestro design is an enhancement of 
the protection of the L1 cache.  On the Tile64, a parity error 
causes a processor exemption.  On the Maestro, the 
intention was that a parity error instead causes a cache miss, 
causing a re-load from L2 cache, which corrects the error.   

On-chip registers 

There are many on-chip configuration registers, memory 
FIFOs, and other memory cells. These are protected by 
Boeing RHBD standard cells.  Although these storage 
devices are not EDAC protected in Maestro additional 
protection is provided by software routines that compare 
their values against a known good copy of their values 
stored in EDAC protected memory. 

In addition to the Single Event Upset (SEU) resistance of 
the Boeing standard RHBD cells, the MAESTRO includes 
additional mitigation for Single Event Transients (SETs) by 
incorporating temporal filtering on the data, scan and clock 
inputs. Depending on the timing requirements and criticality 
of the node, the temporal filter may be included on all, some 
or none of the inputs. 

External DDR 

The Maestro includes a new DDR module that is both 
radiation hardened and adds DDR1 functionality as well as 
the existing DDR2 functionality.  The new DDR controller 
uses the existing internal data mesh shim, but adds the 
ability to run external Built-in-self-test on DDR memories 
as well as a loopback test for radiation testing without 
needing external memories. 

5. FAULT TOLERANCE DISCUSSION 

This paper is most concerned with the fault tolerance issues 
of a potential enhancement of the Maestro architecture, 
henceforth referred to as “Maestro-enhanced.” Three 
approaches for implementing fault-tolerance on the 
enhanced processor are outlined for purposes of discussion 
and to illuminate possible tradeoffs.  The baseline starting 

point is the Tilera/Boeing-Maestro architecture; the 
suggested three approaches propose adding software and 
hardware to achieve improved fault tolerance. In order that 
the fault tolerance enhancements be implementable with 
minimal changes to the design, and thus minimal cost and 
risk, this paper focuses on “low hanging fruit”, i.e., 
relatively straightforward approaches to improving 
reliability through easily attainable fault tolerance 
improvements requiring minimal modification of the 
hardware, system software and associated development 
tools. The suggested approaches represent incremental 
changes of increasing complexity for increased fault 
tolerance – hopefully exposing what can be done, what is 
gained, and how much it costs.  

Maestro – The Starting Point 

From a fault tolerance standpoint, Maestro has greatly 
reduced the Tile64 Single Event Upset (SEU) rate by 
Radiation Hardened By Design (RHBD) circuits in its logic 
design and by adding error codes in cache memories.  The 
SEU rate that has been achieved has not yet been fully 
determined, but it is expected that the SEU error rate of a 
processor core or other subsystem of equivalent complexity 
has been reduced to somewhere in the neighborhood of 
typical radiation-hardened uniprocessors previously used in 
space applications.  The overall Maestro chip SEU error rate 
is probably higher than earlier single radiation hardened 
spacecraft uniprocessors due to its higher overall complexity 
of 49 cores and larger physical size.  The permanent fault 
rate from reliability wear-out mechanisms is also probably 
higher than earlier chips, but there is sufficient circuit 
redundancy on chip to recover from many of the permanent 
faults – at a somewhat reduced level of performance.  
Permanent fault recovery algorithms (on-chip redundant 
workarounds) are still being developed for the Maestro 
processor. 

Although error correcting codes have been used in 
memories and caches, most of the rest of the Maestro chip 
(49 CPUs, five intercommunication networks, DMA 
controllers, finite state machines, etc.) have no hardware 
redundancy to allow local error detection or correction, 
since its design philosophy depends upon the RHBD circuit 
design to reduce SEUs to a negligible rate.  The SEU rate 
reduction techniques may not be sufficient, so we look for 
adding additional fault-tolerance in Maestro-enhanced. 

Before discussing possible fault-tolerance alternatives it is 
useful to review a selected set of typical spacecraft 
dependability requirements. 

Typical use cases for on board processing 

Some of the possible uses of processing on spacecraft are as 
follows, from least critical to most critical: 

On board instrument processing (aka payload 
processing)—This use is typically has the lowest reliability 
and fault tolerance requirement set, but may have the 
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maximum requirement on throughput and power vs. 
performance ratios.   It involves non-real time processing of 
instrument data for analysis or downlink.  It does not 
perform the main Command and Data Handling (C&DH) 
processing function.  The aim is to process at the best of its 
ability, detect and report any uncorrected errors, and solely 
operate as a subsystem support role. Lifetime use is often 
quite lengthy, i.e., the sensor may be actively used for long 
periods of mission time, thus the associated processor has a 
concomitantly long mission life requirement. 

On board navigation sensor processing—This function has 
an increased performance requirement.  This use typically 
involves processing of navigation sensors such as inertial 
units, radar sensors, LIDARs and navigation cameras. 
Typically this function adds a tighter real-time processing 
requirement and higher reliability, fault tolerance and error 
handling ability. The processing must be fast enough for the 
navigation control loop, be reliable during the performance 
period, and report correct results, or report when a result is 
suspect. Depending on specific mission use, this function 
may have a relatively short lifetime, e.g., minutes to days 
for an entry descent and landing operation, or it may have a 
significantly longer life time, e.g., years, for rover 
autonomous navigation operations. 

On board robotic C&DH—This function typically has a 
lower processing throughput requirement, but still retains 
the real-time requirements, and adds greatly to the 
availability requirement.  This function manages spacecraft 
health and operation. Availability requirements will dictate 
whether a single processor or multiple redundant processors 
are required. In future systems, it is expected that this 
function will grow in required throughput as model based 
onboard mission and spacecraft health management 
technologies are matured and incorporated into next 
generation missions. 

Human Life Critical Systems—This is the most stringent of 
all use cases with respect to reliability and fault tolerance.  
Any function that affects critical aspects of a human flight 
will add heavy requirements for availability and reliability. 
Single processor solutions, regardless of the reliability, 
performance, or dependability of the device will never be 
sufficient. Multiple levels of redundancy will be required at 
the system level in a fault tolerance hierarchy. Counter 
intuitively, because these systems require this high level of 
redundancy regardless of the device level capability, a 
somewhat less reliable computing component may be 
utilized. In other words, inasmuch as the system must pay a 
penalty in mass, power, and volume anyway, less reliable 
parts can be used! This approach has been used to 
significant advantage in the Constellation Orion CEV 
design, where commercial (non-radiation hardened) 
components are used with massive redundancy to provide 
high performance computing in human life critical systems.   

General Requirements for Use on Spacecraft 

Typical 

Most of these requirements are specified in rates in order to 
make them more relevant to potential users and to reflect the 
effects of RHBD already employed in Maestro. 

(1)  Maestro-enhanced shall recover from errors and faults 
autonomously –without intervention from the ground.   
Mean time between failure to recover events, λfra , 
might be specified e.g., values of 5 to >100 years 
depending upon the criticality of the application and 
the availability of ground support. 

(2) The rate of incorrect outputs shall be less than one 
every Nce years.  (This variable may range from 0.5 to 
>100 for different criticality of applications.) 

(3) Computational Integrity is the probability that when a 
computation is recovered after an error or fault that it 
can be correctly completed, i.e., no computations were 
lost and the end state of the computation is correct.  
This is the opposite of situations where a computer 
must be rebooted in order to recover.   A recovery 
without computational integrity may occur when state 
data is lost through latent errors, input buffer 
overflows during recovery due to excessive recovery 
delays, etc. 

(4) The availability is Nav, the probability that the system 
is “up” and ready to use at any given time. Typical 
values of Nav should be in the range of 0.9995 or 
higher. 

More Stringent Requirements for Real Time Control 
Systems for Unmanned Spacecraft 

(5) Typically real-time applications must be synchronized, 
and worst case timings must deliver correct and timely 
results in the presence of all worst-case: i) behavior of 
programs running, ii) data traffic in the shared 
communication system, and iii) any reasonably 
expected error/fault recovery being conducted in the 
system.   

(6) Recovery time from errors must be bounded.  
Typically critical hard real time programs must be run 
redundantly in order to “operate through” errors.   

(7) These redundant copies must be run in fault-
containment regions to prevent correlated errors/faults 
from disabling their function. 

(8) Reliability is the probability that correct operation 
continues throughout the mission.   Typical required 
values are > 0.9995. 

Human Life Critical Systems cannot be implemented 
without redundant copies of Maestro-enhanced with 
independent power supplies, and I/O because there is always 
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the risk of catastrophic failure of a single chip and its 
supporting circuits.  Severe requirements on containment 
regions and execution of redundant computation in these 
regions MUST be maintained.  However a single Maestro-
enhanced may be sufficiently reliable for low-cost 
unmanned spacecraft if some modifications are made. This 
is especially true for unmanned rovers. 

Key Implications of two typical spacecraft requirements 

(1) In light of general requirement (1) for autonomous on-
board recovery a considerable amount of software and 
possibly some support hardware will need to be 
developed for Maestro-enhanced to implement this 
recovery process. 

(2) In order to meet acceptable levels of general 
requirement (2) for correct outputs, additional error 
detection must be implemented in hardware and 
software.  It is not sufficient to use the standard OS 
and timeout checks that come with Maestro because of 
their low coverage and long latency.  Erroneous 
outputs will occur before an error is detected.  
Therefore SIFT (Software Implemented Fault 
Tolerance) is needed to provide acceptable error 
detection and autonomous recovery as described in the 
next section. 

(3) To provide high computational integrity, it is 
necessary to prevent hypervisor state and system 
control tables from being damaged by a single error or 
fault.  These situations are likely to result in a system 
re-boot and loss of both state and computation results 
as well as considerable delay.  This in turn may require 
more complex and expensive spacecraft designs to 
compensate for these situations.  This may imply 
replicating execution of hypervisor functions and 
redundancy of critical state tables. 

(4) For more critical real-time control functions, it will be 
necessary to provide time synchronization and run 
multiple voted copies.  Here it is important to 
minimize the probability of a single error or fault 
disrupting more than one copy at a time.  This implies 
reducing the probability of common failures with 
added hardware support to prevent violating virtual 
memory protection boundaries and minimizing the 
probability of common failures by splitting up the chip 
into fault containment quadrants. 

SIFT – Software Implemented Fault Tolerance (necessary 

for Implication 1,2,3 above.) 

Software Implemented Fault Tolerance goes back over forty 
years with perhaps the first SIFT system being implemented 
for uniprocessors at SRI under NASA sponsorship.  About a 
decade ago, these types of systems were implemented to 
provide fault tolerance in computer clusters.  One of the 
early ones was Chameleon at the University of Illinois [4].  
A software system, named “Ghidra” has been developed at 

UCLA and partially funded by NASA for multicomputers 
that provides a framework for Software Implement Fault 
Tolerance (SIFT) in multicomputer clusters [5,6]. It is an 
example of a software architecture that should be adaptable 
to the Maestro or Maestro-enhanced multicore processors in 
a fairly straightforward fashion and at a relatively low cost.  
Three processors run three identical copies of a triplicated 
Control and Fault Management (CFM) program in different 
computers that is responsible for scheduling, collecting error 
check results, and activating error/fault recovery in 
applications running on themselves and other computers in a 
cluster.  The CFM controls software agents in all of the 
processors that do scheduling, timeout checking and error 
collection locally and report to the three CFM processors.  
The agents circumvent failure of a CFM replica by voting. 
The CFM is capable of scheduling simplex, duplex or 
triplicated application processes in different processors.  
These application processes do comparison, or voting of 
other redundant copies or checking of simplex ABFT-
checked processes and send the results via the agents to the 
CFM.   

This type of software can be used in multicore processors if 
protection of address spaces can be provided and 
unexpected interactions between cores is suppressed.  If not, 
then additional system re-boots and an external recovery 
agent may be necessary for a degraded level of fault 
tolerance.  

The three suggested fault-tolerant approaches for Maestro-
enhanced are outlined below: 

1. Basic Maestro-enhanced FT 

a) SIFT Software is added, and three tiles serve as the CFM 
that manages the cores, collects error messages, and restarts 
failed applications.  It should be noted that in the Ghidra 
system, these three cores can be arbitrarily chosen and can 
“float” amongst the processor array. Also note that the CFM 
functionality is relatively light weight, occupying a 
relatively small number of cycles, thus these cores need not 
be dedicated to the CMF and CMF cores may execute other 
codes, including applications.  

b) The three CFM tiles send heartbeats to an external 
hardened restart state machine where they are voted.  If two 
CFM tiles fail to deliver an OK heartbeat, the Restart 
sequencer re-boots the whole system.  

c) Error checking and reporting is done by applications that 
either run simplex with ABFT acceptance test checking, or 
in Replicated Mode (two or more copies are executed and 
results compared) 

The SIFT software was developed for multicomputers under 
the assumptions that each computer could be viewed as a 
fault containment region.  It assumes reliable message 
passing that uses source coding for message authentication 
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to assure that messages are correct and came from the right 
place to maintain interactive consistency.  

In a shared memory multicore machine like Maestro, there 
are many opportunities for single errors to affect more than 
one processor, and circumvent the software barriers for error 
propagation provided by messages (e.g., a transient on the 
common clock, or errors that violate virtual memory 
boundaries, or errors in cache coherency). 

In Maestro, single bit errors can do major computational 
damage.   The mesh networks are not protected against 
errors (i.e., parity), allowing wrong data to be sent to 
memory, and destination addresses are not protected, 
allowing reads and writes to wrong places – including into 
other virtual memory spaces. The source tile address is not 
included in packets, making authentication impossible. The 
TLB and many DMA controllers are similarly not protected, 
allowing violation of virtual address boundaries.   

Although the latches and flip flops are protected by RHBD 
standard cells, there are tens of thousands of flip-flops in the 
Maestro mesh network, thousands of latches and flip-flops 
in DMA controllers and at least hundreds of latches in state 
machine controllers that are not protected by secondary data 
integrity checks.  All of these can lead to unexpected error 
propagation or violation of virtual memory protection 
boundaries. 

So What Does This Mean? 

If SIFT is implemented on the existing Maestro, it can 
greatly reduce the number of incorrect outputs, but there 
will be a significant number of error cases where state 
recovery cannot be achieved and the system must be 
reloaded and re-booted, and the loss of computations may 
require ground intervention.  It may even hang under some 
circumstances. 

By i) improving the error detection capabilities, ii) 
providing better capabilities for implementation an 
underlying reliable communications layer, iii) providing 
greatly improved fault isolation and reducing the probability 
of catastrophic single failure, and iv) providing a better 
mechanism for isolating permanent faults and quickly and 
automatically working around them, the reliability, and  
overall error recovery time can be improved.   

Maestro is only partially fault-tolerant, so it is important to 
ask the question “can additional fault tolerance be added to 
a future Maestro-Enhanced design that will make a machine 
that is more suited to critical applications?” Some suggested 
fault tolerance improvements, derived from the discussion 
above, are listed below: 

 
(1) Add error detection (e.g. parity) to all word buffers of 

switches to detect address and data errors in packets 
and reduce error-induced violations of virtual spaces.   

(2) Provide traceability in the switch network to see where 
an error occurred to allow location of intermittent 
faults. 

(3) Add error detection (e.g., parity) to Registers in DMA 
controllers and to the Translation Lookaside buffer to 
prevent virtual address boundary violations. 

(4) Use Error Correcting Code in the write back second 
level cache to allow error correction of level 1 and 
level 2 cache errors without interrupting the processor 
or requiring a program rollback. 

(5) The source ID should be included in all packets to 
allow authentication and creation of a reliable 
communications layer for SIFT. 

(6) Interleave memory scrubbing rather than requiring a 
processing halt when this occurs. 

(7) Augment the routing algorithm to i) allow packets to 
be re-routed through an intermediate destination to 
work around failed tiles and links and not isolate 
communications between tiles, ii) to allow a tile to 
send a message redundantly through disjoint paths 

(8) To prevent error propagation, partition tiles into 
regions that memory writes cannot cross – reads and 
message passing are unrestricted.  Partition voted real-
time processes across regions. 

(9) Augment the chip design to minimize the probability 
of a single fault from disabling the whole chip, or a 
transient error from affecting multiple sites. 

Adding parity protection to the TLB, to the networks, and to 
DMA controllers greatly reduces the probability that an 
error will cause violation of virtual address protection 
boundaries.  This prevents the accumulation of latent errors 
that often make recovery difficult and can bring down the 
CFM, thus requiring a reboot.3 

In order to recover from an intermittent fault in the switch 
network, it is necessary to identify where errors occur and 
keep track of whether certain errors in certain switches are 
occurring frequently in order to isolate and work around the 
faulty hardware.  By adding error detection to internal 
packets, it is possible to trace to the switch where an error 
occurred. 

The suggested additional packet routing mode allows a tile 
to use a physically different path in order to work around 
permanent tile or link failures.  This allows some computing 
to continue after such a fault has occurred and thus the 
 
3 Some packet coding could be done in software, as could addition of a 
source ID.  However the two internal networks are hardware controlled so a 
hardware fix is necessary.  Adding parity on words in a uniform fashion is 
advantageous for all networks, and would be faster than requiring extra 
software for each message.  Message re-routing requires hardware to be 
efficient.  
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possibility of continuing after a permanent fault without 
bringing down and reprogramming the Maestro-enhanced. 

The suggested changes above will improve error coverage 
by detecting many errors sooner than they would be 
detected otherwise by software (ABFT/Replicated.), make 
recovery actions more effective, and make the SIFT more 
stable.   

This approach greatly reduces the probability of errors 
causing violation of physical and virtual boundaries, but 
when a core runs the hypervisor, the hypervisor is 
unprotected.  Therefore it is possible for an error that occurs 
(when the hypervisor is running in unprotected mode) to set 
up wrong TLB pointers or to damage the system tables on 
which all tiles and I/O devices depend.  Additional work is 
needed on protecting the hypervisor. 

Maestro-enhanced for Real Time and Protection of Control 

and Fault Management 

The idea (see 8 above) of separating the tiles into regions 
where memory writes cannot cross a region partition is 
especially useful in implementing triplicated and voted 
processes such as real-time applications, Control and Fault 
Management (CFM), and possibly protecting the 
hypervisor.   There real time processes are block redundant 
with each copy implemented in a different region.  This 
prevents a processing error from affecting more than one 
copy.  

This hardwall can be implemented dynamically under 
control of the hypervisor or a Ghidra type fault tolerant 
cluster manager middleware, and/or it may be hard-designed 
into the basic architecture. A potentially advantageous 
Maestro partitioning, for example, would be to partition the 
array into four quadrants with each quadrant ‘owning’ a 
memory interface a gigabit Ethernet port and a XAUI port. 

This goes as far as possible in matching, from a fault 
tolerance standpoint, the multicomputer environment for 
which SIFT was designed.  CFM replicas are separated into 
fault containment regions where erroneous software 
(including the hypervisor) cannot damage other quadrants.  
Message authentication is made possible by the changes in 
(2) Augmented Maestro-enhanced above. 

The philosophy here is to make a relatively inexpensive 
change to the architecture that makes stronger fault-
containment domains to allow real time control and to 
improve dependability of the CFM – which is at the heart of 
SIFT. 

Since the tiles, memory, and I/O of Maestro-enhanced 
would share common logic for clocks and overall chip 
control, as well as a common piece of silicon, package, 
board and power supplies,  there are still  single faults that 
can completely disable the system.   The design of such a 
system should strongly protect these circuits by use of 

extended RHBD and hardware implemented fault tolerant 
techniques to minimize the probability of those single point 
failures occurring  

6. CONCLUSION 

The Boeing Maestro development has demonstrated a low 
cost methodology of radiation hardening a commercial 
many-core processor.  The SEU rate that has been achieved 
has not yet been fully determined, but preliminary results 
indicate that the SEU error rate of a processor core or other 
subsystem of equivalent complexity has been reduced to 
somewhere in the neighborhood of typical radiation-
hardened uniprocessors previously used in space. It should 
enable very high performance on-board processing for a 
number of upcoming space missions, and it may have a 
revolutionary impact. 

The success of the Maestro development contrasted with the 
discussion in this paper also points out an essential 
conundrum in achieving fault-tolerance in these complex 
technologies.  To put them into space at all requires building 
upon the intellectual property, expertise, and tens, if not 
hundreds of millions of dollars of investment of private 
industry for high volume commercial applications. For their 
market, dependability is valued, but fault tolerance must be 
traded off against performance.  The degree to which their 
designs can be modified, by an outside agent that translates 
them to radiation-hardened chips, is limited by cost, 
computer architecture expertise, and knowledge of the 
original design. 

If this is done, it is apparent that a modern, high 
performance computer, providing orders of magnitude 
improvement in spacecraft onboard computing can be 
developed at a relatively low cost (1s to low 10s of millions 
of dollars), providing concomitant improvements in 
spacecraft performance, mission science return, and reduced 
mission cost and risk across a broad range of science, 
exploration, defense and commercial applications.  
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